Radioactive Material Production, Transportation, Use, and Possible Misuse

Prepared by
Brooke Buddemeier, CHP
LLNL Counter Terrorism and Incident Response Program
Lawrence Livermore National Laboratory*

brooke2@llnl.gov (925) 423-2627

This presentation available for download from

http://www-cms.llnl.gov/seaborginstitute/training.html

Science in the National Interest

Lawrence Livermore National Laboratory

Department of Energy University of California Lawrence Livermore National Laboratory ensures national security and applies science and technology to important problems of our time.

Radioactive Waterial Production, Transportation, and Use

Radioactive Material Production, Transportation, and Use

- The creation, shipping, and use of radioactive material is highly regulated (IAEA, NRC, DOT, etc.).
- High Activity Sources can only be produced by sophisticated methods (e.g. reactors & accelerators).
- High activity sources can only be obtained after special licensing to ensure their <u>safe use</u> and their <u>security</u>.
- Similar regulations exist in other countries were radioactive material is produced or used.

Shielding Requirements Limit Portability

• For gamma sources: the higher the activity, the more shielding you require to transport the source.

Small radiography sources:

- typically 0.1 Ci
 to 200 Ci.
- 30 50 Lbs

Medium radiography sources:

- Hundreds of Ci
- 200 400 Lbs

Large industrial source:

- 9,000 Ci
- 3 tons of shielding

High Activity Radioactive Material

Fuel Assembly

Spent Nuclear Fuel & High Level Waste

 Radioisotope Thermoelectric Generators (RTG)

Medical & Radiographic sources

Spent Fuel

- Currently stored "onsite" at locations throughout the country.
- Spent Fuel containers extremely rugged and made to withstand extreme accident conditions.
- For thirty years, > 5,000 highlyradioactive fuel assemblies have been shipped without radiation release (despite several accidents).
- Security measures are taken.

Radioisotope Thermoelectric Generators (RTG)

Self heated Plutonium 238

- The heat generated by the radioactive decay is used to generate electricity
- Used when maintenance free power is need for decades (satellites, ocean bottom, and arctic applications)
- RTGs most often made from Sr-90 (0.46 kW/kg) or Pu-238 (0.54 kW/kg).

Portable Radiography Sources

- "Top strength" industrial radiography sources can burn fingers and cause radiation sickness within a few minutes.
- Effects drop off dramatically with distance. Outside of 3 meters, acute effects rare even after hours of exposure.
- Sources are constructed to meet rigorous testing standards.
 A typical source is encapsulated in two (2) TIG welded
 Stainless Steel Capsules.
- Source Material itself is often metal (Cobalt or Iridium) or embedded on non-soluble ceramics or "microspheres" to prevent inhalation of radioactive material if the source encapsulation is breached.

Facility Based Irradiators

- These sources can have 10 to 100 times more radioactivity than radiography sources
- Found in food irradiators, medical sterilizers, etc.
- The shielded enclosures that hold the sources weigh more than a ton.
- Difficult to remove source from the facility or equipment.

High Activity Source Transportation

Containers that ship high activity sources are meant to withstand very punishing accident conditions.

A 30-foot free drop onto a flat, un-yielding surface so that the package's weakest point is struck

A 40-inch free drop onto a 6-inch diameter steel rod at least 8 inches long, striking the package at it's most vulnerable spot.

Exposure of the entire package to 1475° for 30 minutes.

Immersion of the package under 50 feet of water for at least 8 hours.

conclusion

Radioactive Material Production, Transportation, and Use

- High Activity Radioactive Material is highly regulated.
- Industrial Sources are very robust and made not to leak.
- When dangerous quantities are shipped, the material is put a a container capable of withstanding harsh accident conditions.
- Very high activity industrial/medical sources are facility based and difficult to remove.

How Might High Activity Radioactive Material be Misused?

 Expose people to an external source of radiation.

Disperse radioactive material using conventional means.

 Explosively Disperse radioactive material [a "Dirty Bomb"].

Create a Nuclear Weapon (this requires special nuclear material)

WHAT IS A DIRTY BOMEY

- A "Dirty Bomb" is conventional explosives combined with radioactive material with the intention of spreading the radioactive material over a relatively large area.
- This is **NOT** a nuclear explosion, the radioactive material does not enhance the explosion.
- Very few deaths would be expected from acute radiological exposure (the greatest hazard would likely be from the effects of the conventional explosives).
- The contamination will hamper emergency response efforts and can delay hospital treatment.
- Widespread contamination can deny the use of facilities and areas and have a significant psychological impact on the exposed population.

External Exposures

 Focused radiation or localized contamination can result in radiation effect to specific areas on the body

- A passing radioactive cloud or smoke
- A large, distant point source
- Exposure from contamination deposited on the ground

Internal Exposures

- Once radioactive material is deposited in the body, it can expose the person from within.
- The magnitude of the dose will depend on many factors:
 - How much material was deposited,
 - How it got into the body (ingestion, inhalation, absorption, or injection)
 - Chemical form of the radioactive material,
 - the radiation it produces,
 - How quickly it decays, and
 - How quickly the body eliminates the material

Internal Exposures

- Dose from <u>internal depositions</u> are usually expressed by <u>summing dose that will be</u> received over the next 50 years from a one time internal deposition.
 - Referred to as Committed Effective Dose Equivalent (CEDE).
 - This dose calculation/estimate takes into account factors on the previous slide.
 - Even with a large CEDE, there may or may not be acute effects from the exposure.

Do not use internal doses to predict acute exposure effects like nausea and vomiting.

Types of Exposure & Health Effects

Acute Dose

- Large radiation dose in a short period of time
- Large doses may result in observable health effects
 - Early: Nausea & vomiting
 - Hair loss, Fatigue, & medical complications
 - Burns and wounds heal slowly
- Examples: Medical Exposures and accidental exposure to sealed sources

Chronic Dose

- Radiation dose received over a long period of time
- Body more easily repairs damage from chronic doses
- Does not usually result in observable effects
- Examples: Background Radiation and Internal Deposition

Inhalation

The Human Factor

- Concerns about radiation and contamination often produce an exaggerated emotional response.
 - Can't detect it with our 5 senses
 - Associated with cancer
 - Reminiscent of "cold war" fears
 - Science difficult to understand
 - Out of our control

- Possible results may be...
 - Unexposed people saturating the medical community
 - Health and economic effects from long term anxiety or depression in the community

Conclusion: Misuse of Radioactive Material

- High activity sources can cause health effects, but only to those in close proximity.
- Acute health effects from distributed radioactive material unlikely without prolonged, high-concentration exposure.
- Radiation or contamination will hinder response efforts.
- Denial of facilities and areas will have a major cost effect
- Public anxiety and it's effects may be the primary lasting health effect.

References

RadEFX(sm) Ionizing Radiation Health Effects Forum

Copyright © 1994-1997 Baylor College of Medicine, All rights reserved.

http://radefx.bcm.tmc.edu/ionizing/subject/risk/acute.htm

Disaster Preparedness for Radiology Professionals

Response to Radiological Terrorism A Primer for Radiologists, Radiation Oncologists and Medical Physicists ©2002 American College of Radiology

http://www.acr.org/departments/educ/disaster_prep/disaster-planning.pdf

Uranium Information Centre

Melbourne, Australia

http://www.uic.com.au/index.htm

Transportation Emergency Preparedness Program (TEPP)

http://www.em.doe.gov/otem/program.html

Large Sources of Radioactive Material, SNL 02-024

Bill Rhodes, Fred Harper, Marvin Larsen

The Department of Energy's "Partners in Emergency Response" Publication-